Stopping Criteria in Contrastive Divergence: Alternatives to the Reconstruction Error
نویسندگان
چکیده
Restricted Boltzmann Machines (RBMs) are general unsupervised learning devices to ascertain generative models of data distributions. RBMs are often trained using the Contrastive Divergence learning algorithm (CD), an approximation to the gradient of the data log-likelihood. A simple reconstruction error is often used to decide whether the approximation provided by the CD algorithm is good enough, though several authors (Schulz et al., 2010; Fischer & Igel, 2010) have raised doubts concerning the feasibility of this procedure. However, not many alternatives to the reconstruction error have been used in the literature. In this manuscript we investigate simple alternatives to the reconstruction error in order to detect as soon as possible the decrease in the log-likelihood during learning. Proceedings of the 2 International Conference on Learning Representations, Banff, Canada, 2014. Copyright 2014 by the author(s).
منابع مشابه
Stopping Criteria in Contrastive Divergence: Alternatives to the Reconstruction Error
Restricted Boltzmann Machines (RBMs) are general unsupervised learning devices to ascertain generative models of data distributions. RBMs are often trained using the Contrastive Divergence learning algorithm (CD), an approximation to the gradient of the data log-likelihood. A simple reconstruction error is often used to decide whether the approximation provided by the CD algorithm is good enoug...
متن کاملA Neighbourhood-Based Stopping Criterion for Contrastive Divergence Learning
Restricted Boltzmann Machines (RBMs) are general unsupervised learning devices to ascertain generative models of data distributions. RBMs are often trained using the Contrastive Divergence learning algorithm (CD), an approximation to the gradient of the data log-likelihood. A simple reconstruction error is often used as a stopping criterion for CD, although several authors [1], [2] have raised ...
متن کاملEmpirical Analysis of the Divergence of Gibbs Sampling Based Learning Algorithms for Restricted Boltzmann Machines
Learning algorithms relying on Gibbs sampling based stochastic approximations of the log-likelihood gradient have become a common way to train Restricted Boltzmann Machines (RBMs). We study three of these methods, Contrastive Divergence (CD) and its refined variants Persistent CD (PCD) and Fast PCD (FPCD). As the approximations are biased, the maximum of the log-likelihood is not necessarily ob...
متن کاملJustifying and Generalizing Contrastive Divergence
We study an expansion of the log likelihood in undirected graphical models such as the restricted Boltzmann machine (RBM), where each term in the expansion is associated with a sample in a Gibbs chain alternating between two random variables (the visible vector and the hidden vector in RBMs). We are particularly interested in estimators of the gradient of the log likelihood obtained through thi...
متن کاملComparing different stopping criteria for fuzzy decision tree induction through IDFID3
Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...
متن کامل